Log In | Contact Us| View Cart (0)
Browse: Collections Digital Content Subjects Creators Record Groups

Albert Overhauser papers

Overview

Abstract

Scope and Contents

Biographical Note

Administrative Information

Detailed Description

Overhauser’s Undergraduate, Graduate, and Post-Doctoral Coursework

Correspondence

Teaching Materials

Research and Professional Activities

Publications by Overhauser

Awards and Honors

Dissertations and Theses

Discipline Publications



Contact us about this collection

Albert Overhauser papers, 1920s-2010s | Purdue University Libraries, Archives and Special Collections

By John Michael Foster

Printer-friendly Printer-friendly | Email Us Contact Us About This Collection

Collection Overview

Title: Albert Overhauser papers, 1920s-2010sAdd to your cart.

Primary Creator: Overhauser, Albert Warner (1925-)

Extent: 26.2 Cubic feet. More info below.

Arrangement:

The Papers are organized into seven series:

1.  Overhauser’s Undergraduate, Graduate, and Post-Doctoral Coursework, 1940s-1950s (1.4 cubic feet).  Composition books and notebooks kept by Overhauser during his undergraduate and graduate studies at the University of California Berkeley and post-doctoral work at the University of Illinois.

Materials in the series are arranged by course.   

2.  Correspondence, 1951-2008 (2.0 cubic feet).  Correspondence sent and received by Overhauser.  The correspondence largely relates to Overhauser’s professional activities, and particularly concerns his interaction with other scientists in the field of physics.  The bulk of the correspondence was written between 1956 and 1982.

Materials in the series are arranged chronologically.

3.  Teaching Materials, 1950s, 1970s-2000s (3.8 cubic feet).  Teaching materials utilized by Overhauser as a professor of physics at Cornell University and Purdue University.  Materials include graded exams (1970s-2000s), problem sets (1970s-2000s), lecture notes (1950s, 2000s, undated), exams and exam drafts (1950s, 1970s-2000s), student grades (1950s, 1990s-2000s), and miscellaneous materials(1950s, 1970s-2000s, undated).  Graded exams (Boxes 5 and 6) and student grades (Box 10) are restricted to protect the confidentiality of Overhauser’s former students.

Materials in the series are arranged chronologically by document type.

4.  Research and Professional Activities, 1950s-2000s (8.9 cubic feet).  Correspondence, experiment test results, graphs, grant materials, notes, publications, publication materials, transparencies, and other items documenting Overhauser’s research and professional activities as a physics scholar.   

Materials in the series are arranged chronologically.  Many items remain in their original folders.

5.  Publications by Overhauser, 1949-2002 (2.2 cubic feet).  Published articles and reports authored and coauthored by Overhauser between 1949 and 2002. 

Materials in the series are arranged chronologically.

6.  Awards and Honors, 1970s-2010s (0.5 cubic feet).  Certificates, newspaper articles, booklets, photographs, and other materials concerning awards and honors bestowed upon Overhauser for his professional achievements.

Materials in the series are arranged by document type.

7.  Dissertations and Theses, 1950s, 1970s-2000s (2.0 cubic feet).  Dissertations and theses submitted by Overhauser’s Cornell University and Purdue University students between 1955 and 1959, and from 1977 to 2009, respectively.

Materials in the series are arranged chronologically.

8.  Discipline Publications, 1920s-2000s (5.4 cubic feet).  Articles and other materials published by Overhauser’s colleagues in the field of physics and related scientific disciplines.

Materials in the series are arranged alphabetically by author’s last name and chronologically by year of publication.  In the case of multiple authors, materials are arranged alphabetically by the first author listed on the publication.

Date Acquired: 05/03/2012

Forms of Material: Correspondence, Notebooks, Publications, Research notes, Theses

Languages: English

Abstract

Correspondence, teaching materials, research and professional materials, dissertations and theses, awards, publications, and other materials pertaining to the work and achievements of Purdue physicist Albert Overhauser and his contemporaries.

Scope and Contents of the Materials

The Albert Overhauser Papers (1920s-2010s; 26.2 cubic feet) documents the professional work and achievements of Purdue professor Albert Overhauser.  The collection contains a vast array of correspondence, notebooks, dissertations and theses, grant applications, graphs and figures, published articles, teaching materials, and other items related to Overhauser’s studies at the University of California at Berkeley and work at Cornell University, the Ford Motor Company, and Purdue University.  The collection almost entirely consists of documents and materials related to Overhauser’s professional work as one of the leading American physicists of his time.

Collection Historical Note

Born in San Diego, California, on August 17, 1925, Albert W. Overhauser was best known for the “Overhauser Effect,” a theory of dynamic nuclear polarization.  Overhauser attended the University of California at Berkeley until his undergraduate studies were interrupted by World War II.  After serving two years (1944-1946) as a radar specialist in the U.S. Navy Reserve, Overhauser returned to Berkeley and graduated Magna Cum Laude with BA degrees in physics and mathematics in 1948.  He remained at Berkeley to earn a PhD in physics three years later.

During two years post-doctoral work at the University of Illinois, Overhauser developed his theory of dynamic nuclear polarization, more popularly known as the Overhauser Effect.  He afterwards taught at Cornell University (1953-1958) and served on the research staff of the Ford Motor Company (1958-1973).  In 1973, Overhauser joined the faculty at Purdue University as the Stuart Distinguished Professor of Physics, a position he held for three decades.  His most substantial work – that pertaining to the Overhauser Effect – came in Nuclear Magnetic Resonance (NMR), which has been widely applied in the disciplines of biomedical science, clinical medicine, macromolecular biology, pharmacology, plant science, and structural biology.

During his long career, Professor Overhauser obtained much acclaim in the scientific community.  He was elected a member of the National Academy of Science in 1976.  A year earlier, Overhauser was the recipient of the Oliver E. Buckly Solid State Physics Prize.  He received honorary doctorates from the University of Chicago (1979), Simon Fraser University (1998), and Purdue University (2005).  The greatest honor came in 1994, when Overhauser was awarded the National Medal of Science by President Bill Clinton.   The National Medal of Science remains the highest honor bestowed on scientists by the U.S. Government.

Professor Overhauser died of natural causes on December 10, 2011.  He was survived by his wife, Margaret, and their eight children.

Sources:

Wikipedia entry for Albert Overhauser, http://en.wikipedia.org/wiki/Albert_Overhauser

Materials within the collection

Biographical Note

Physicist.

On December 19, 1994, Professor Albert Overhauser was invited to a reception at the White House, where President Bill Clinton personally congratulated him on being awarded the National Medal of Science, the highest honor the United States bestows on its citizens for scientific achievement. Dr. Overhauser received the medal for his contributions to understanding the physics of solids, to theoretical physics and for the impact of his technological advances.

Overhauser was born August 17, 1925 in San Diego, California to Clarence Albert Overhauser and Gertrude Irene Pehrson. The family, including his sister Evaclaire Overhauser (Gatto), moved to San Francisco in 1935 where Al attended high school. His high school physics teacher, Ralph Britton, convinced him to give up his aspirations to become a civil engineer and instead to study physics. Following high school graduation, Al attended the University of California, Berkeley (1942-44) and then did a brief stint in the U.S. Naval Reserve (1944-46) during World War II. There he trained in electronics as a radar repair specialist, an experience he always felt was very valuable to him as a scientist. In 1946 he resumed his education at the University of California, Berkeley where in 1948 he received the BA, Magna Cum Laude in Physics and in Mathematics. He stayed on at Berkeley and in 1951 was awarded the Ph.D. in Physics for research carried out under the supervision of Charles Kittel.

He began his professional career at the University of Illinois during 1951-53. It was during this period that he developed his famous theory of dynamic nuclear polarization which shortly after its experimental confirmation became known by its current name, the Overhauser effect. In 1953 he joined Cornell University as an Assistant Professor, and was promoted to Associate Professor three years later. He left Cornell in 1958 to accept a position on the Scientific Research Staff of the Ford Motor Company in Dearborn, Michigan and was rapidly promoted there to Manager, Mathematical and Theoretical Sciences, in 1962, to Assistant Director, Physical Science Laboratory in 1969, and ultimately as Director of the Physical Sciences Laboratory in 1972. He left Ford in 1973 to become Professor of Physics at Purdue University. The following year he was named the Stuart Distinguished Professor of Physics at Purdue.

Overhauser married Margaret Mary Casey on August 25, 1951. They had eight children: Teresa, Catherine, Joan, Paul, John, David, Susan and Steven.

During his long career, Overhauser presented frequently and was invited to lecture at many of the most prestigious universities and research institutes around the world. He also delivered approximately 150 short talks for the American Physical Society. In addition to receiving the National Medal of Science, he has received numerous other distinguished honors. He was awarded the Honorary Doctor of Laws degree from Simon Fraser University (Canada) in 1998, and the Honorary Doctor of Science from the University of Chicago in 1979. He received the Alexander von Humboldt Senior Scientist Award in 1979-80. He became the Stuart Distinguished Professor of Physics at Purdue in 1974 and was awarded the Herbert N. McCoy Research Award at Purdue in 1978. In April 1975 he received the very prestigious Oliver E. Buckley Solid State Physics Prize awarded by the American Physical Society for his contributions to the advancement of knowledge in Solid State Physics.

He was a Fellow of the American Academy of Arts and Sciences, and a Visiting Scientist of the Japan Society for the Promotion of Science in 1978. In addition he served on numerous panels and boards including the Buckley Prize Committee (chair 1989, 1990); Board of Trustees, Argonne Universities Association; NSF Solid State Review Panel for Harvard, Cornell, Northwestern, Brown and the National Magnet Laboratory; and has served as Counselor-at-Large of the American Physical Society, 1982-86.

In October 1995, the Albert W. Overhauser Symposium took place on the campus of Purdue University. On this occasion relatives, friends, former students, post-docs and scholars came together to pay tribute to him on the occasion of his seventieth birthday. Among the professional colleagues in attendance and presenting papers were: Anthony Arrot, Morrel Cohen, Gene Dresselhaus, Mildred Dresselhaus, Helmut Fritsche, John Quinn, Frederick Seitz, Charles Slichter, Valentino Telegdi and Samuel Werner. 

Perhaps Dr. Overhauser's most important contribution to science was his concept of dynamic nuclear polarization, which opened up new areas of science for research. The consequences of his discovery---known as the Overhauser Effect---for nuclear magnetic resonance, and through nuclear magnetic resonance for chemistry, biology and high-energy physics have been significant. The idea was originally so unexpected that it was resisted vehemently by the authorities in the field. Not until its existence was demonstrated experimentally by Slichter and Carver(1)in 1953 was it fully accepted. 

In simplest terms, Overhauser was the first to demonstrate that it is possible to line-up, or to polarize, nuclear spins by a factor 1000 or so larger than one would expect based on then common intuitive notions. The trick that he used was first to impose microwave power on the nuclear-electron system and thereby excite the electronic spins to higher, non-thermal equilibrium states. Then because of the coupling between the electron and the nuclear spins, as the excited electron spins try to equilibrate to their lower states they reorient the nuclear spins. The nuclear spins then exhibit an enhanced polarization by a factor equal to the ratio of the electronic to the nuclear magnetic moments i.e., by about a factor of ≅ 1000.

When first proposed as a contributed paper at an APS meeting in April 1953, the proposal was met with much skepticism by a formidable array of physics talent. Included among these were notables such as: Felix Bloch (recipient of 1952 Physics Nobel Prize), Edward M. Purcell (recipient of Nobel Prize 1952 with Bloch and session chair), Isidor I. Rabi (recipient of Physics Nobel Prize, 1944) and Norman F. Ramsey (recipient of Physics Nobel Prize, 1989). Experimental confirmation of the Overhauser Effect was soon available via the experiments of Carver and Slichter(1), further convincing the research community of its validity. 

Since the original discovery and its subsequent confirmation in a wide variety of experiments, the Overhauser effect has been used in Nuclear Magnetic Resonance applications to determine the structure of proteins and other molecules. This pervasive use of the Overhauser effect has spawned a variety of new terms. For example, the "Nuclear Overhauser Effect" (NOE) describes a collection of adaptations of the Overhauser Effect.

Besides its direct usage in scientific research, the Overhauser Effect is also the essential ingredient of an instrument which measures magnetic field strength to very high accuracy. Generically, such devices are known as Overhauser magnetometers. By using dynamic nuclear polarization, signal strength can be increased to such an extent that very accurate values for the magnetic field strength can be achieved.

Although perhaps not as widely known as his discovery of dynamic nuclear polarization Overhauser has a number of other scientific achievements to his credit. These are dispersed among his approximately 180 scientific publications. Overhauser was awarded the degree of Honorary Doctor of Laws at Simon Fraser University in 1998, not only for his work on dynamic nuclear polarization but also for the remarkable insight he offered into the nature of the physical world. In 1960 he predicted the existence of spin and charge density waves. This far-reaching concept led to a deeper understanding of the way electrons behave in metals. And while at Purdue University, Albert Overhauser, together with colleague Roberto Colella, constructed a neutron interoferometer, which he then used to show for the first time that gravity plays a role in quantum mechanics.

Administrative Information

Repository: Purdue University Libraries, Archives and Special Collections

Alternate Extent Statement: 26.2 cubic feet (21 c.f. boxes, 12 mss. boxes, 2 flat boxes)

Access Restrictions: Majority of collection is open for research.  Materials in Boxes 6 and 10 are restricted for reasons of confidentiality.

Use Restrictions: Purdue University per deed of gift

Acquisition Source: Margaret Overhauser, March 12, 2012; June 25, 2012

Acquisition Method: Donation

Preferred Citation: MSF 485, Albert Overhauser Papers, Archives and Special Collections, Purdue University Libraries

Processing Information: Materials in Series 1-3 and 5-8 have been organized by subject and/or document type.  In most cases, items comprising these series were re-housed in acid-free folders.  Materials in folders comprising Series 4 remain in their original order, but the folders themselves are arranged chronologically.  When possible, items in Series 4 were left in their original folders with their original headings, which are noted, when applicable, in the attached inventory.  Items originally housed in hanging folders have been removed from those folders and placed in acid-free folders.  All materials in the collection are housed in acid-free manuscript and cubic foot boxes.


Box and Folder Listing


Browse by Series:

[Series 1: Overhauser’s Undergraduate, Graduate, and Post-Doctoral Coursework, 1940s-1950s],
[Series 2: Correspondence, 1951-2008],
[Series 3: Teaching Materials, 1950s, 1970s-2000s],
[Series 4: Research and Professional Activities, 1950s-2000s],
[Series 5: Publications by Overhauser, 1949-2002],
[Series 6: Awards and Honors, 1970s-2010s],
[Series 7: Dissertations and Theses, 1950s, 1970s-2000s],
[Series 8: Discipline Publications, 1920s-2000s],
[All]